Stony corals (Order: Scleractinia) are central to vital marine habitats known as coral reefs. Numerous stressors in the Anthropocene are contributing to the ongoing decline in coral reef health and coverage. While viruses are established modulators of marine microbial dynamics, their interactions within the coral holobiont and impact on coral health and physiology remain unclear. To address this key knowledge gap, we investigated diverse stony coral genomes for ‘endogenous’ viruses. Our study uncovered a remarkable number of integrated viral elements recognized as ‘Polintoviruses’ (Class Polintoviricetes) in thirty Scleractinia genomes; with several species harboring hundreds to thousands of polintoviruses. We reveal massive paralogous expansion of polintoviruses in stony coral genomes, alongside the presence of integrated elements closely related to Polinton-like viruses (PLVs), a group of viruses that exist as free virions. These results suggest multiple integrations of polintoviruses and PLV-relatives, along with paralogous expansions, shaped stony coral genomes. Re-analysis of existing gene expression data reveals all polintovirus structural and non-structural hallmark genes are expressed, providing support for free virion production from polintoviruses. Our results, revealing a significant diversity of polintovirus across the Scleractinia order, open a new research avenue into polintovirus and their possible roles in disease, genomic plasticity, and environmental adaptation in this key group of organisms